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Abstract

The problem addressed in this paper is to discover the frequently occurred sequential patterns from databases.

Basically, the existing studies on finding sequential patterns can be roughly classified into two main categories. In the

first category, the discovered patterns are continuous patterns, where all the elements in the pattern appear in

consecutive positions in transactions. The second category is to mine discontinuous patterns, where the adjacent

elements in the pattern need not appear consecutively in transactions. Although there are many researches on finding

either kind of patterns, no previous researches can find both of them. Neither can they find the discontinuous patterns

formed of several continuous sub-patterns. Therefore, we define a new kind of patterns, called hybrid pattern, which is

the combination of continuous patterns and discontinuous patterns. In this paper, two algorithms are developed to

mine hybrid patterns, where the first algorithm is easy but slow while the second complicated but much faster than the

first one. Finally, the simulation result shows that our second algorithm is as fast as the currently best algorithm for

mining sequential patterns. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Data mining is to extract implicit, previously
unknown and potentially useful information from
database [1]. Many approaches have been pro-
posed to extract information. One of the most
important one is mining association rules. This
approach was first introduced in [2], and can be
stated as follows:
Given a database of sales transaction, an

association rule is an implication of the form
X-Y ; where X and Y are subset of items and
X-Y ¼ |: This rule indicates that if we bought X

then it is likely that we will also purchase Y : To
find the association rules from database, we firstly
need to calculate the supports of itemsets X and
X,Y ; where the support of X is the number of
transactions in database containing X : Next, we
must determine if the itemsets X,Y and X are
frequent, where an itemset is frequent if its support
is greater than or equal to the user-specified
minimum support (called minsup.) If they are
frequent, we then compute the confidence of the
rule by formula supportðX,Y Þ=supportðX Þ: Final-
ly, the rule X-Y holds if its confidence is greater
than or equal to the user-specified minimum
confidence (called minconf.)
Many of previous researches in association rules

assume that the items bought in a transaction are
unordered [2–7]. In other words, the items in a
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transaction can be denoted by a set of items.
Although this assumption seems reasonable, we
may encounter situations where order is impor-
tant. For example, Agrawal and Srikant [8] point
out that not only the items bought but also the
transaction times are needed to mine customer
behaviors. Another example [9–12] involves
mining traversal patterns in web surfing. Still
many other examples exist, such as shopping
sequences in malls, traveling sequences in a tour,
plan failure predictions [13] and the genetic
sequences of gene [14]. All these problems need
to deal with ordered data, and many researches
have been done [15,16,8–10,17–20,12,21,22,14] to
discover meaningful patterns from them.
In general, finding patterns from sequential data

in the literature can be classified into three main
categories. The first category is finding similar
patterns, where a pattern is similar to another
pattern if the distance or correlation between them
is within a user-defined threshold [15–17,23]. The
second category is finding periodic patterns, which
are to discover the cyclic patterns in time-stamped
databases [18,20]. Finally, the last one is finding
frequent patterns, which are to enumerate those
patterns with supports exceeding some given
threshold [8,9,19,24,11,12,21,22,13]. Among these
three categories, finding frequent patterns is
possibly the most popular and has been extensively
studied because of its numerous applications in the
areas such as web surfing, plan execution, event
sequence and shopping order analysis. It can be
further divided into sequential frequent pattern
and non-sequential frequent pattern. The former
[8,9,19,11,12,21,14,13] are linear subsequences
occurred frequently in databases, while the latter
[25,24,22] are non-linear subsequences such as
partial-order-graphs, tree structures or graph
structures.
In essence, previous researches use similar

methods as those of mining association rules to
find sequential pattern. The patterns are discov-
ered from database by identifying those subse-
quences with supports no less than the given
threshold. The found patterns indicate what are
the frequently occurred subsequences that need
our attention. For example, a user may visit site A,
then site B and finally site C in order. And if many

users have the same behavior, then the subse-
quence /ABCS forms a meaningful pattern.
Basically, the sequential patterns found by the

previous researches can be classified into two
major categories: continuous patterns and discon-
tinuous patterns. In finding continuous patterns
[15,16,9,17,23,14], we say a pattern A ¼
/a1; a2;y; anS occurs in a transaction of sequen-
tial data B ¼ ðb1; b2;y; bmÞ if there exists integer i

such that a1 ¼ bi; a2 ¼ biþ1;y; an ¼ biþn�1: In
other words, all the elements in the pattern appear
in consecutive positions of transactions. For
example, the continuous pattern /ABS occurs in
an ordered transaction of (A, B, K, F, P) but does
not in (K, Q, A, D, B). In practice, difficulties may
arise for continuous patterns. Let us use the
following navigation sequences to explain:

* Sequence 1: A, B, Y, K, F.
* Sequence 2: A, B, K, F, P.
* Sequence 3: C, A, B, C, R, K, F.
* Sequence 4: K, Q, A, D, B.
* Sequence 5: F, G, B, M.

Suppose the minimum support threshold is 3.
Then an interesting navigation pattern is first to
visit sites A and B, and then visit sites K and F.
But, between the visiting of sites A and B and that
of K and F, there are a variable number of
intermediate sites. This example indicates that a
meaningful pattern may consist of several contin-
uous sub-patterns that are not adjacent. If the
traditional algorithm for finding continuous pat-
terns is applied, we only find patterns /ABS and
/KFS but without finding /ABnKFS , where
‘‘ * ’’ means a variable number of intermediate
elements.
The second category finds discontinuous pat-

terns [8,11,12,21,26,13], where we say a discontin-
uous pattern A ¼ ða1; a2;y; an) occurs in a
transaction of ordered data B ¼ ðb1; b2;y; bmÞ
if there exists integer i1oi2o?oin such that
a1 ¼ bi1 ; a2 ¼ bi2 ;y; an ¼ bin : For example,
/AnBnKnFS; /BnKnFS; /BnFS and /KS are
some discontinuous patterns occurred in the above
example.
Note that the continuous patterns such as

/ABS and /KFS cannot be found by the
algorithms for mining discontinuous patterns.
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Similarly, neither can the discontinuous patterns
such as /BnKS and /AnBnKnFS be found by the
algorithms for continuous patterns. Most interest-
ingly, neither types of algorithms can discover the
hybrid patterns such as /ABKnFS; /ABnKFS
and /ABnKnFS: Without these hybrid patterns,
many important traversal relations will be lost.
For example, in analyzing the customer footsteps
in an on-line store, we may be interested in finding
the patterns like

/referrer-address entry-pagenproduct-pageS;
/referrer-address entry-pagenproduct-pagenbasket-pageS and

/referrer-address entry-pagenproduct-pagenbasket-page
purchasing-actionS;

from which we can analyze the look-to-click rates,
click-to-basket rates and basket-to-buy rates [27]
for different area visitors starting at different entry
pages. Besides, the hybrid pattern /referrer-
address entry-pagen product-page basket-pageS
indicates how many click-throughs are directly
converted to basket placement. As another exam-
ple, the hybrid pattern /product-page details-
pagen purchasing-actionS tells us how many
visitors who continuously watch the product-page
and the related details-page will finally buy the
product.
Therefore, not knowing the hybrid patterns

means that some implicit, previously unknown
and potentially useful knowledge are still hidden in
the database, and this means a failure of the
mining task. That motivates us to develop a
method to discover hybrid patterns from
database.
In this paper, we use a variable character ‘‘* ’’ to

denote a sequence of unknown items. The number
of items represented by a ‘‘ * ’’ can be as small as
zero or as large as any number allowed by
database systems. In finding patterns from se-
quences, the pattern may contain many variable
characters ‘‘ * ’’. Therefore, the hybrid patterns
would look like as /ABnKFS; /ABnCnKFS or
/AnBCDS:
From the discovered hybrid patterns, we can

generate sequential rules. The generated rules are
different from the previous ones in two ways.

(1) Not only do we have the traditional rule that
reasons forwardly such as X-Y ; but also we

can find the backward rules such as X’Y ;
which means that if we currently visit Y then
it is possible that we have visited X before.

(2) We divide the rules into two categories where
the first is direct rule and the second is indirect
rule. A direct rule of the form X-Y means
that we visit Y immediately after we visited X :
An indirect rule of the form X -* Y means
that Y is eventually visited after X ; but the
detail visiting order is unspecified.

In Section 2, we present an algorithm for finding
hybrid patterns. In Section 3, the algorithm is
further improved by using complicated data
structures to reduce the number of phases of the
algorithm and the number of scans through
database. Next, we discuss how to generate
sequential rules from hybrid patterns in Section
4. Finally, the evaluation of the algorithms’
performances is done in Section 5 and the
conclusion is given in Section 6.

2. The proposed algorithm

Let I ¼ fi1; i2;y; img denote all items in data-
base D: Each transaction T ¼ /e1; e2;y; enS is a
sequence of items, where eiAI is the ith item. Let
‘‘ * ’’ denote a subsequence of any length, including
zero length. A ‘‘* ’’ can be replaced by any
sequence. For example, a pattern of /AnBS can
denote /ABS; /ACBS; /ADDCBS and so on.
We are going to find patterns X ¼ /x1;x2;y; xnS
from databases. Basically, patterns are sequences
of items satisfying the following constraints:

(1) xiAI,f‘‘ * ’’g:
(2) x1AI and xnAI :
(3) For 1oion; if xi ¼ ‘‘ * ’’ then xiþ1AI

and xi�1AI :

According to this definition, /ABCS; /AnBCS
and /AnBnCS are patterns, but /nABCS;
/*AB

nnCnS and /AnBnnCS are not patterns. If
the following conditions are satisfied then we say
that a transaction T contains the pattern (XCT):

(1) For each known item x in X ; there is a
corresponding matched item x in T :
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(2) If x and y are two known items in X and x

precedes y in X ; then the corresponding item
matched with x must also precede the
corresponding item matched with y in T :

(3) If there is no interleaving ‘‘*’’ between items x

and y in X ; then the corresponding positions
in T must be continuous.

Example 1. If X ¼ /AnBCS and T ¼
/BACABCCS then we have two matches satisfy-
ing XCT : In the first match, the first, second and
third known items in X match the second, fifth and
sixth items in T ; respectively. As to the second
match, we map the first, second and third known
items in X to the fourth, fifth and sixth items in T ;
respectively. But, when we set X ¼ /AnBACS
then XgT :
Since a pattern X may occur several times in a

transaction T ; we need to determine the number of
matches of XCT : This counting is not necessary
for the previous researches on transaction data-
bases, because they view a transaction as a set of
items and hence they only need to determine if a
pattern exists in a transaction. On the contrary,
because we view a transaction as a sequence with
repeated items, we need to compute the supports
of patterns according to their total occurrences.
The following function is designed to determine
the number of occurrences of X in T ; where X ðiÞ is
the ith known item in X ; TðjÞ is the jth item in T

and numberðX ; 1;T ; 1Þ is the main program to
activate the computation.

Example 2. Suppose we have X ¼/ABnBS and T ¼
/BABAABCBS: By running the function
numberðX ; 1;T ; 1Þ; we will call the functions
numberðX ; 2;T ; 3Þ; numberðX ; 2;T ; 5Þ; numberðX ; 2;
T ; 6Þ; because X ð1Þ matches TðpÞ when p ¼ 2; 4 and
5. In executing numberðX ; 2;T ; 3Þ; we will activate
numberðX ; 3;T ; 4Þ because of X ð2Þ ¼ Tð3Þ: After
that, the execution of numberðX ; 3;T ; 4Þ will increase
the value of num by 2, since X ð3Þ matches TðpÞ when
p ¼ 6 and p ¼ 8: As to the execution of
numberðX ; 2;T ; 5Þ; we just return to the calling
program since X ð2Þ is not equal to Tð5Þ: Finally,
the execution of numberðX ; 2;T ; 6Þ will activate the
function numberðX ; 3;T ; 7Þ; which will increase the
value of num by 1 when p ¼ 8: Thus, the final value of
num is 3.

For a pattern X ; the number of known elements
in X is called the fixed length of X : Similarly, we
define the variable length of pattern X as the
number of ‘‘ * ’’ in X : For example, we have the
fixed length as 3 and variable length as 1 if X ¼
/AnBCS; and fixed length as 4 and variable
length as 2 if X ¼ /AnBBnCS: Throughout the
paper we use Xk;r to denote a pattern X with fixed
length k and variable length r: For example,
/AnBCS and /AnBBnCS can be represented by
X3;1 and X4;2; respectively.
By definition, if X is a pattern, then it will have

no leading ‘‘ * ’’ and trailing ‘‘ * ’’. But, if we write it
as =X ; it means that the leading ‘‘ * ’’ is added.
Similarly, X= means that the trailing ‘‘ * ’’ is added,
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and =X= for both. For example, if X ¼
/AnBBnCS; then =X ¼ /nAnBBnCS; X= ¼
/AnBBnCnS and =X= ¼ /nAnBBnCnS:
In database D; the total number of occurr-

ences of pattern X is called the support of X ;
which is denoted by supportðX Þ: Let minsup be
the user-specified minimum threshold for
support. A pattern X is frequent if it satisfies
supportðX ÞXminsup:
Let Lk; r denote the set of all frequent patterns

with fixed length k and variable length r: Similarly,
we define Ck; r as the set of all candidates patterns
with fixed length k and variable length r: Note
that, a candidate pattern in Ck; r may not be a
frequent pattern in Lk; r; but every frequent pattern
in Lk; r must exist in Ck; r: Therefore, Ck; r is a
superset of Lk; r:
Our algorithm proceeds in phases, where the kth

phase is to find all frequent patterns of fixed length
k from the candidate patterns of fixed length k: In

the first phase, we need to find C1; 0; i.e., all
candidate patterns with only one known element
and zero ‘‘ * ’’. For the database in Fig. 1, the
corresponding C1; 0 is shown in Fig. 2. By scanning
the database sequentially and determining how
many occurrences of those patterns, we can get the
supports of all patterns in C1; 0: If the minimum
support threshold is 2, then we can get the
resulting frequent patterns L1; 0 as shown in Fig. 2.
The kth phase can be further divided into k sub-

phases. The first sub-phase of the kth phase is to
produce Lk; k�1: To this end, we derive Ck; k�1 by
Lk�1; k�2 join Lk�1; k�2: For example, C2; 1 in
Fig. 3 was derived by L1; 0 join L1; 0 and C3;2 in
Fig. 4 by L2; 1 join L2; 1: (For the details of join
operation, please see the function GetJoin, which
will be introduced later.) Having obtained Ck; k�1;
we then derive Lk; k�1 by computing their sup-
ports, which can be done by scanning the database
and trimming patterns with insufficient supports.
The jth sub-phase of the kth phase, where

2pjpk; contains the following steps. In this sub-
phase, we need to produce Lk; k�j from Ck; k�j : To
get Ck; k�j ; we can produce it from Lk; k�jþ1 by
removing an internal variable character ‘‘ * ’’. For
example, by removing an internal variable char-
acter ‘‘ * ’’ from /AnCnAS in L3;2; we derive
candidate patterns /ACnAS and /AnCAS in
C3;1: Having obtained Ck; k�j ; we then derive
Lk; k�j by computing their supports and pruning

Fig. 1. A sample database.

Fig. 2. The first phase.
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those patterns without enough supports. The
above steps can be summarized as the following
algorithm:

In the above algorithm, some steps need to be
further explained. These steps include the function
GetJoin in step 4, GetNextCandidate in step 8 and
Pruning method in steps 5 and 9. In the following,
we explain each of them in order.

2.1. Function GetJoin

In algorithm GFP1, function GetJoin is used to
generate Ck; k�1 from the frequent pattern set
Lk�1; k�2: To see how this is done, let us consider a
frequent pattern X in Lk; k�1: Since X is in Lk; k�1;
it can be represented as follows:

X ¼ /x1 *x2 *x3 *?*xk�2 *xk�1 *xkS:

In everywhere X has occurred, so did the following
two patterns:

X ð1; k � 1Þ ¼ /x1 *x2 *x3 *?*xk�2 *xk�1S;

X ð2; kÞ ¼ /x2 *x3 *?*xk�2 *xk�1 *xkS;

where X ði; jÞ denotes the pattern formed by the
subsequence of X from the ith known item to the jth
known item. Therefore, the necessary condition of X

in Lk; k�1 is that X ð1; k � 1Þ and X ð2; kÞ must be
also frequent pattern, i.e., belong to the set Lk�1; k�2:
In a word, by joining the patterns in Lk�1; k�2; we
can find a set of candidate patterns which contains all
frequent patterns in Lk; k�1: The following is the
formal definition of function GetJoin:

Function GetJoinðLk�1; k�2;Lk�1; k�2Þ
insert into Ck; k�1

select p=; qðk � 1; k � 1Þ
from Lk�1; k�2 p; Lk�1; k�2 q

where pð2; k � 1Þ ¼ qð1; k � 2Þ

Example 3. Suppose we want to generate C4;3 in
Fig. 6 from L3;2 in Fig. 4. When p ¼ /AnCnAS
and q ¼ /CnAnGS; we have pð2; 3Þ ¼ qð1; 2Þ ¼
/CnAS; hence, p= ¼ /AnCnAnS and qð3; 3Þ ¼
/GS and the generated pattern is /AnCnAnGS:

2.2. Function GetNextCandidates

In Algorithm GFP1, function GetNextCandi-

date is used to generate Ck; k�j from the frequent
pattern set Lk; k�jþ1: To see how this is done, let X

denote a frequent pattern in Lk; k�j : Then X will
have k–j internal ‘‘ * ’’, k known items and k-1
interleaving positions between known elements.
Since k � jok � 1; there must exist two adjacent
known elements xi and xiþ1 without interleaving
‘‘ * ’’. Hence we can represent X as follows:

X ¼ /x1yxixiþ1yyxkS:

If we insert a variable character ‘‘ * ’’ into the
position between xi and xiþ1; then we get a new
pattern as follows:

X 0 ¼ /x1yxi *xiþ1yy*xkS:

Obviously, wherever contain X also contain X 0:
In other words, the support of X 0 will be not less
than that of X : Hence, the necessary condition of
X in Lk; k�j is that X 0 must be in Lk; k�jþ1: From
this observation, we can find the candidate set
Ck; k�j by removing a ‘‘ * ’’ from all the frequent
patterns in Lk; k�jþ1: The following is the formal
definition of function GetNextCandidates:

Function GetNextCandidatesðLk; k�jþ1Þ
insert into Ck; k�j

select /x1yxixiþ1yyxkS
from Lk; k�jþ1X

0 ¼ /x1yxi *xiþ1yyxkS
where ‘‘* ’’ exists between xi and xiþ1

2.3. Prune Ck; k�j

In fact, the size of Ck; k�j can be further reduced.
Let us consider pattern /AnBCDS: Obviously,
the support of this pattern must be no more
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than its sub-patterns such as /AnBCS;
/AnBnDS; /AnCDS and /BCDS: Hence the
necessary condition of XACk; k�j to be frequent is
that its (k-1)-subpattern Y must also be frequent.
According to this observation, the set Ck; k�j can
be further pruned by the following procedure:

For patterns XACk; k�j do
if any (k-1)-subpatternY of X is not frequent
then delete X from Ck; k�j

To find (k-1)-subpattern Y of X ; we need to
choose one known item in X and replace it with
‘‘ * ’’. After the replacement, if the replaced ‘‘ * ’’ has
some adjacent ‘‘* ’’s, then we further combine them
as a single ‘‘ * ’’. For example, if X ¼ /AnBCDS;
then by replacing A we get Y ¼ /BCDS; by B we
get Y ¼ /AnCDS; by C we get Y ¼ /AnBnDS
and D we get Y ¼ /AnBCS: Since the replaced
‘‘ * ’’ may have zero, one or two adjacent ‘‘ * ’’s, the
(k-1)-subpattern Y of X may have k � j þ 1 or

Fig. 3. The second phase.
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k � j or k � j � 1 internal ‘‘ * ’’s. This means that
we can determine if Y is frequent or not by
examining Lk�1; k�jþ1 , Lk�1; k�j and Lk�1; k�j�1:
Finally, we use an example to illustrate the whole
algorithm.

Example 4. Fig. 1 shows the database, where we
have five transactions and 11 items. Suppose we
have minsup ¼ 2: In the first phase, we first
generate C1; 0; and the result is shown in Fig. 2.

Then, we scan the database to determine the
support of each candidate pattern in C1; 0; and we
get L1; 0 by removing those candidate patterns
without enough supports. The results are shown in
Fig. 2.
In the second phase, the following two sub-

phases are done:

(1) Derive C2; 1 by GetJoinðL1; 0;L1; 0Þ: Prune C2; 1

by checking if its /1S-subpatterns are

Fig. 4. The first sub-phase in the third phase.
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frequent. Compute their supports and deter-
mine L2; 1:

(2) Generate C2; 0 by function GetNextCandi-
datesðL2; 1). Prune C2; 0 by checking if its
/1S-subpatterns are frequent. Compute their
supports and determine L2; 0:

The other phases can be done similarly, and its
results are shown in Figs. 3–6.

3. An improved algorithm

Although the algorithm in Section 2 is correct, it
is possible to further improve its performance.
First, note that the function numberðX ; 1;T ; 1Þ is
used to determine the number of occurrences of
XCT : Thus, if there are n different patterns X in
the candidate pattern set, say Ck; r; then each
transaction needs to execute the function n times.
This redundancy motivates us to design a tree

structure representing all the patterns in Ck; r so
that we can examine all the patterns at a time.
Next, we also notice that the algorithm requires k

sub-phases in the kth phase in order to find the
frequent patterns from the candidate sets
Ck; k�1;Ck; k�2;y;Ck;0: For each sub-phase, we
need to scan the database one time. Therefore, if
the maximum fixed length of the candidates is m;
then we need to scan the database 1þ 2þ 3þ
?þ m ¼ mðm þ 1Þ=2 times. To reduce this heavy
I/O cost, our approach is to integrate all the sub-
phases in the same phase into a single phase. This
way, the number of times of database scans can be
reduced from mðm þ 1Þ=2 to m:
In the following, we describe how we finish the

above two improvements. First, each phase of the
algorithm, say the kth phase, needs to construct a
candidate tree to represent all the patterns
appeared in the candidate sets Ck; k�1;
Ck; k�2;y;Ck;0: Initially, the candidate tree is only
a root without any other nodes. For each

Fig. 5. The second and third sub-phases in the third phase.
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candidate pattern in Ck; k�1; we insert it into the
candidate tree. Note that, after all patterns have
been inserted, all the leaves have the same depth
and the path from the root down to the leaf node
corresponds to a pattern. For example, if we
construct the candidate tree for C4;3 in Fig. 6, then
the result is shown as in Fig. 7.
Here, the readers should note this tree is suitable

for representing not only C4;3 but also the super-
sets of C4;2; C4;1 and C4;0: For example, leaf node
BGAC can be viewed in eight different ways as

BGAC, BnGAC; BGnAC; BnGnAC; BGAnC;
BnGAnC; BGnAnC; BnGnAnC: To make the
difference clear, we attach eight fields with each
leaf node in Fig. 7, where each field is used to store
the support of a different pattern.
Generally speaking, for a candidate tree con-

structed from Ck; k�1; each leaf node, say
x1x2x3yxk; will have 2k�1 fields to keep the
supports for 2k�1 different candidate patterns. Let
these fields be numbered as 0; 1; 2;y; 2k�1 � 1: To
arrange the storing positions for these different
patterns, we use the following rule. Set bi ¼ 1 if the
considered pattern has a ‘‘ * ’’ between xi and xiþ1:
Otherwise, bi ¼ 0: Then the field with index s is
used to store the pattern where

Pk�1
i¼1 bi2

i�1 ¼ s:
According to this rule, the leaf node BGAC will
store the eight different patterns in this sequence
BGAC, BnGAC; BGnAC; BnGnAC; BGAnC;
BnGAnC; BGnAnC and BnGnAnC:
In our new algorithm, all the transactions will

traverse the candidate tree one by one. In such a
traversal, we will remember the positions in the
transaction that match the arcs in the path. For
example, assume that we traverse the tree by
transaction 5 ¼ ðBGACAFJÞ: After we reaching
the leaf node, say leaf node BGAC, the position
matched with the first arc is 1, matched with the
second is 2, with the third is 3 and the last is 4.
From these matched positions, we can infer the
possible patterns. If two adjacent positions are
continuous, then we may have either one ‘‘ * ’’
interleaved between them or none. On the other
hand, if they are not continuous, then there must

Fig. 6. The fourth phase.

Fig. 7. The candidate tree constructed from C4;3:
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have a ‘‘ * ’’ between them. For example, if the
matched positions are 1, 2, 3, 4, then all eight
patterns occur in the transaction, and the indexes
b1; b2 and b3 can all be set as either 1 or 0. As
another example, if the transaction data is
(BFGKACD), then the matched positions are 1,
3, 5 and 6. In this case, BnGnAC and BnGnAnC are
possible patterns; so, b1 and b2 can only be 1 but b3
can be either 1 or 0.
In the process of traversing the candidate tree, if

we have reached a leaf node, we need to find all the
matched patterns and increase the supports of all
the corresponding fields. This means that the
computation time for each reached leaf of depth
k is Oð2k�1Þ: Since the reaching of a leaf node may
occur many times in scanning the database, this
cost is too high to tolerate. Here, we provide a way
to reduce the computation time for each reached
leaf from Oð2k�1Þ to Oð1Þ: In the following, we
explain our idea:
For a pattern X ; we say Y is a generalization of

X ; if X and Y are the same patterns except that Y

has more ‘‘ * ’’s than X : For example, BGnAnC is a
generalization of BGAnC and BGAC. In Fig. 8,

we show the possible generalizations for every
pattern in Ck; k�1: For example, the pattern
BGAnC (indexed as 001) has generalized patterns
as BnGAnC (101), BGnAnC (011) and BnGnAnC
(111). Similarly, the pattern BGnAC (indexed as
010) has generalized patterns as BGnAnC (011),
BnGnAC (110) and BnGnAnC (111). In traversing
the candidate tree in Fig. 7, if we get a series of
matched positions, say 1, 3, 5 and 6, then the
possible indexes are ‘‘110’’ and ‘‘111’’ and the
found patterns are BnGnAC and BnGnAnC: In
these two patterns, BnGnAC is more specific than
BnGnAnC; and let us call it the most specific
pattern. As a similar example, if the transaction is
(ABKFKGAC), then the series of matched posi-
tions is 2,6,7,8, and so the found patterns are
BnGAC; BnGnAC; BnGAnC and BnGnAnC; where
BnGAC is the most specific pattern. Originally,
when we have reached a leaf in the candidate tree,
we need to increase the supports of all found
patterns. That is why we need Oð2k�1Þ computa-
tion for every reaching. To reduce this cost, rather
than all found patterns, we only increase the
support of the most specific pattern. Say, if the
series of matched positions is 2, 6, 7, 8, then we
only increase the field of index ‘‘100’’. Similarly, if
the series of positions is 1, 3, 5, 6, then we add 1
into the field with index ‘‘110’’. This way, the
computation cost for each reaching is reduced to
Oð1Þ; because we need only one addition.
Unfortunately, a problem arises immediately is

how we can ensure that the supports of all the
patterns are correct, because we omit many
additions that we should do. To compensate those
missing computations, we choose to redo it again
after all transactions have finished the traversals of
the candidate tree. Let us consider Fig. 8 again,
where the numbers inside the brackets denote the
supports without compensation. Since general
patterns occur in those places where specific
patterns occur, we can compensate the missing
counts by adding back the supports to the
generalized patterns. Therefore, the support of
pattern BGAnC (indexed as 001) should be added
into those of BnGAnC (101), BGnAnC (011) and
BnGnAnC (111). Similarly, the support of BGnAC
(indexed as 010) need be added into those of
BGnAnC (011), BnGnAC (110) and BnGnAnC (111).Fig. 8. The compensation list structure from C4;3:
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In Fig. 9,we show the supports of all the patterns
after compensation.
Note that the compensation list structure like

Fig. 8 can be applied to all the patterns of fixed
length 4, because they all have the same general-

ization structure. From this list, we know in what
order the compensation can be executed and into
which fields we should add the supports. The
advantage of using this list is that we can save
many comparison operations. Without the list,
each time when we process a candidate in Ck; k�1;
comparisons are required to determine the next
field to execute the compensation and into which
fields our supports should be added. If there have
totally n candidates in Ck; k�1; then all these
comparisons are repeated n times. Since all
candidates in Ck; k�1 have the same generalization
structure, it is possible to spare all these compar-
isons if we store the comparison procedure as a list
structure. By using the list, we are free from the
comparisons, and the additions can be done
directly by following the list.

In the above paragraphs, we do not yet give the
details of how a transaction traverses the candi-
date tree. The following is the step-by-step
procedure, where we can start the traversal by
calling traverseðCT ; root;T ; 1; |Þ:

Example 5. Let us use the candidate tree of Fig. 7
and transaction T ¼ ðBGACACÞ as an example to
illustrate the execution of the above function. We
activate the computation by calling
traverseðCT ; root;T ; 1; |Þ: In that function, we will
call another two functions traverseðCT ;
root;T ; 2; |Þ; and traverseðCT ; node B, T ; 2; ð1ÞÞ:
In processing traverseðCT ; root;T ; 2; |Þ; another two
functions traverseðCT ; root;T ; 3; |Þ; traverseðCT ;
node G, T ; 3; ð2ÞÞ will be called. Similarly, the
execution of function traverseðCT ; node B;T ; 2; ð1ÞÞ
will initiate another two functions traverseðCT ; node
B,T ; 3; ð1ÞÞ and traverseðCT ; node BG,T ; 3; ð1; 2ÞÞ:
Repeatedly doing this way, we will find the most
specific patterns in the following functions:

traverse(CT, node BGAC, T ; 5, (1,2,3,4)) and the
pattern BGAC

traverse(CT, node GACA, T ; 6, (2,3,4,5) ) and the
pattern GACA

traverse(CT, node BGAC, T ; 7, (1,2,3,6)) and the
pattern BGAnC

traverse(CT, node BGAC, T ; 7, (1,2,5,6)) and the
patter BGnAC

Fig. 9. The supports of all the patterns after compensation.
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Finally, by integrating all the techniques proposed
in this section into Algorithm GFP1, the final
algorithm will become as follows:

4. Sequential rules

From the found hybrid patterns, the sequential
rules can be generated. Our rules are different
from the previous researches’ in two ways.

(1) Besides the forward rules that reason for-
wardly such as X-Y , we also have the
backward rules such as X’Y :

(2) We divide the rules into two categories where
the first is direct rule and the second indirect.

Totally, we have the following four kinds of
rules:

(1) Direct-and-forward: A direct-and-forward
rule of the form X-Y holds if (a) the support
of pattern Z ¼ X þ Y is no less than minsup;
and (b) the confidence of the rule is no less than
the user-specified minimum confidence. Here,
the confidence of the rule is defined as follows:

confidenceðX-Y Þ ¼ supportðZÞ=supportðX Þ:

For example, if our rule is /ABS-
/CDnGS; then we have

confidenceðX-Y Þ ¼ supportð/ABCDnGSÞ=

supportð/ABSÞ:

(2) Direct-and-backward: A direct-and-backward
rule of the form X’Y holds if (a) the support
of pattern Z ¼ X þ Y is no less than minsup;

and (b) the confidence of the rule is no less
than the user-specified minimum confidence.
Here, the confidence of the rule is defined as
follows:

confidenceðX’Y Þ ¼ supportðZÞ=supportðY Þ:
For example, if our rule is /ABS’
/CDnGS; then we have
confidenceðX’Y Þ ¼ supportð/ABCDnGSÞ=

supportð/CDnGSÞ:

(3) Indirect-and-forward: An indirect-and-for-
ward rule of the form X -* Y holds if (a)
the support of pattern Z ¼ X þ =Y is no less
than minsup; and (b) the confidence of the rule
is no less than the user-specified minimum
confidence. Here, the confidence of the rule is
defined as follows:

confidenceðX -*Y Þ ¼ supportðZÞ=supportðX Þ:
For example, if our rule is /ABS-*

/CDnGS then we have
confidenceðX-*Y Þ ¼ supportð/ABnCDnGSÞ=

supportð/ABSÞ:

(4) Indirect-and-backward: An indirect-and-
backward rule of the form X ’* Y holds if
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(a) the support of pattern Z ¼ X=þ Y is no
less than minsup; and (b) the confidence of the
rule is no less than the user-specified minimum
confidence. Here, the confidence of the rule is
defined as follows:

confidenceðX’* Y Þ ¼ supportðZÞ=supportðX Þ:

For example, if our rule is /ABS’*

/CDnGS then we have

confidenceðX’* Y Þ¼ supportð/ABnCDnGSÞ=

supportð/ABSÞ:

5. Experimental results

The experiment contains three parts. Firstly, we
compare the performance between the algorithms
proposed in Sections 2 and 3, GFP1 and GFP2,
and we find that GFP2 is much faster than GFP1.
Secondly, we compare GFP2 with the algorithm
for mining continuous patterns. Since there were
no previous researches dedicated for studying its
performance, we adopt the most popular method,
a modified Apriori algorithm, as the comparison
target. (Although these past researches used
continuous patterns, their goals are not to develop
efficient methods for finding them
[15,16,9,17,23,14].) The simulation result shows
that GFP2 greatly outperforms the modified
Apriori algorithm. Thirdly, we compare GFP2
with the algorithms for mining discontinuous
patterns. The targets of our comparison include

PrefixSpan algorithm [21] and WAP-tree algo-
rithm [12], because PrefixSpan and WAP-tree are
independently declared as the fastest algorithms
for discontinuous patterns. The simulation result
shows that GFP2 is faster than the PrefixSpan
algorithm, but is only as fast as the WAP-tree
algorithm. Although our algorithm did not sur-
pass the WAP-tree algorithm, the patterns we can
find are much more abundant than those of the
WAP-tree algorithm. Not only can we find
discontinuous patterns, as the WAP-tree algorithm
does, but also we can find continuous patterns as
well as some interesting patterns that are neither
discontinuous nor continuous.
The first part of simulation is done on a PC with

Pentium-II 266 processor and 384M main memory
under the NT4.0 operating system and use
experiment data from the Access log file in the
library Web server. A record in the log file is
composed of an IP address and a web page. In the
log file, the IP sequentially visits many web pages
and we combine these continuous records with the
same IP into a single record. This way, a record is
a transaction with many items (web pages). We use
the real-life dataset and vary different parameters
to analyze the algorithms’ performances and the
numbers of generated patterns.
Tables 1 and 2 compare the running times of the

two algorithms. Table 1 shows the execution times
of GFP1 and GFP2 when the minimum support is
fixed as five transactions but the number of
transactions is varied from 500 transactions to
4000 transactions. Table 2 shows the execution

Table 1

Execution times vs. numbers of transactions for the two algorithms

Number of transactions (s) 500 1000 1500 2000 2500 3000 3500 4000

Execution time of GFP1 829 850 947 1017 2372 2340 14375 33328

Execution time of GFP2 1 1 1 1 2 2 2 3

Table 2

Execution times vs. supports for the two algorithms

Minimum support transactions (s) 15 12 9 6 3

Execution time of GFP1 912 923 938 981 5118

Execution time of GFP2 1 1 1 1 3
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times of GFP1 and GFP2 as the minimum support
is decreased from 15 to 3 and the number of
transactions is set as 2000. As expected, GFP2
outperforms GFP1 in all cases.
Secondly, we compare GFP2 with the modified

Apriori algorithm, which is for finding continuous
patterns. Since the real-life dataset on our hand is
not large enough, we generate the synthetic
datasets by applying the algorithm in [4] and all
the experiments are performed a PC with Pentium-
III 933 processor and 1024M main memory under
the Window 2000 operating system. However, the
content of our transactions is little different from
theirs in that we allow a transaction to have

repeated items. Similar as that in [4], the para-
meters need to be set are shown in Table 3, where
we set N ¼ 10000 and jLj ¼ 5000: In this experi-
ments, three datasets are used for comparisons:
T25I2D10K, T25I2D30K and T25I2D50K. The
results in Table 4 show that GFP2 greatly outper-
forms the modified Apriori algorithm. In Table 4,
we also note that the number of generated hybrid
patterns is obviously greater than that of contin-
uous patterns. In fact, the numbers of generated
patterns could have an even bigger contrast, if the
minimum support is changed to a smaller value.
However, we did not do this for saving the endless
time to run the modified Apriori algorithm.
Finally, we make a comparison between GFP2,

PrefixSpan and WAP-tree algorithms. Table 5
summarizes the dataset parameter settings.
Figs. 10 and 11 show the execution times of 3
algorithms for different sizes of database, where jI j
is set as either 2 or 4 and the minimum support is
set as 0.01. Similarly, Figs. 14 and 15 show the
execution times for different minimum supports,
where jI j is set as either 2 or 4 and the number of
transactions is set as 500K. From the result, we see

Table 3

Parameter settings

jDj Number of transactons

jT j Average size of the transactions

jI j Average size of the maximal potentially

frequent continuous patterns

jLj Number of maximal potentially frequent patterns

N Number of items

Table 4

The comparison between GFP2 and the modified Apriori algorithm

Minimum support (0.015) T25.I2.D10K T25.I2.D30K T25.I2.D50K

Apriori-like (sec) 3022 8930 16544

Number of frequent sequences 193 182 212

GFP2 (sec) 8 17 33

Number of frequent sequences 329 204 476

Table 5

Parameter settings

Name jT j jI j jDj

T10.I2.D100K 10 2 100K

T10.I2.D200K 10 2 200K

T10.I2.D300K 10 2 300K

T10.I2.D400K 10 2 400K

T10.I2.D500K 10 2 500K

T10.I4.D100K 10 4 100K

T10.I4.D200K 10 4 200K

T10.I4.D300K 10 4 300K

T10.I4.D400K 10 4 400K

T10.I4.D500K 10 4 500K
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that the running time of 3 algorithms grow linearly
when the number of transactions is increased, and
the performances of GFP2 and WAP-tree are
better than that of PrefixSpan. Among GFP2 and
WAP-tree, GFP2 is the winner when the transac-
tion size is bigger (jI j ¼ 4). The possible reason for
this phenomenon may be due to WAP-tree
algorithm requires a lot of recursions to recursively
produce other sub-WAP-trees. Therefore, when
the recursion depth is deeper, its performance
deteriorates more quickly than GFP2.
Besides, Figs. 12 and 13 show the numbers of

generated hybrid patterns and discontinuous
patterns for different database sizes. From the
figures, we see that the number of patterns is not
related with the database size. Further, Figs. 16
and 17 show that the number of generated hybrid
patterns is only slightly larger than that of
discontinuous patterns when the minimum sup-
port is large. The reason for this phenomenon is
because when the minimum support threshold is
high we only generate those patterns that are
short, i.e., containing only one item. But for a
smaller minimum support threshold, the result

shows that the number of hybrid patterns is much
more than that of discontinuous patterns.

6. Conclusion

The problem studied in this paper is to find
hybrid patterns from sequential data. In this
paper, two algorithms are developed, where the

Fig. 10. Execution times vs. numbers of transactions for I2.

Fig. 11. Execution times vs. numbers of transactions for I4.

Fig. 12. Numbers of frequent patterns vs. numbers of transac-

tions for Fig. 10.

Fig. 13. Numbers of frequent patterns vs. numbers of transac-

tions for Fig. 11.

Fig. 14. Execution times vs. minimum supports for I2.
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first algorithm is easy but slow while the second
complicated but much faster. From the experi-
ments, it is shown that the second algorithm GFP2
is as fast as the currently best algorithm for mining
sequential patterns. Although our algorithm only
runs the same speed as the WAP-tree algorithm,
the patterns we can find are much more abundant
than those of the WAP-tree algorithm. Not only
can we find discontinuous patterns, as the WAP-
tree algorithm does, but also we can find

continuous patterns as well as some interesting
patterns that are neither discontinuous nor con-
tinuous.
This paper has some possible extensions. For

example, note that generalization of patterns is
very important for practical purposes. Without
generalization, the generated patterns may be too
detailed. Therefore, by including concept hierar-
chies, we may produce patterns or rules that are
more abstract and meaningful. Next, another
possible extension is to prune less interesting
patterns that are trivial or implied by other
patterns. Without removing uninteresting pat-
terns, we may be overwhelmed by a great number
of patterns. Further, we may ask for that the
generated patterns must comply with some given
meta-forms. This will help us to avoid lots of
patterns that do not fit our expectations or
applications. In addition, we can associate a
quantity with each item in the sequence. This
quantity may denote the staying time in a web site.
And the problem now becomes to find quantitative
patterns from sequential data. Finally, we can
extend the transaction structure such that a
transaction is formed of a list of itemsets rather
than a list of items.
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